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Abstract. The Sullivan model is adopted for the interaction parameters of fluid-fluid and 
wall-fluid potentials in binary mixtures. The capillary condensation in ‘two-coexisting-phases’ 
and ‘three-coexisting-phases’ open system confined between WO parallel walls ss studied 
analytically by a dynamical approach. The result shows that not only a first-order bul also 
a continuous hmsition is possible. The two systems sludied in the present paper have no 
apparent diffetmce in theit wetting behaviours, and their phase diagram conshucted in terms of 
the two components of the wall-fluid potential is a segment of an ellipse. 

1. Introduction 

A detailed study of the wetting transition in a onecomponent system with a single flat 
substrate has been given [I] ,  including the analytical [2,3] and numerical work [4]. For 
systems that are confined between two parallel walls, only a few treatments for open systems 
[5 ]  and closed systems [6] exist. An analytical study of binary fluid mixtures in a limited 
space has not yet been performed, although there has been a numerical work on capillary 
condensation in binary fluids [7]. Thus a systematic treatment on such problems analytically 
is necessary. 

The previous studies reveal that the substrate plays an essential role in determining the 
wetting behaviours of binary fluid mixtures 181, such as the order of the transition and the 
phase diagram of the wetting state. Naturally, we are convinced that an added substrate 
may provide more phenomena. especially in the limit of a small separation between the two 
walls. This consideration motivated us to cany out the investigation in the present paper. 

Capillary condensation is a phenomenon that occurs when a fluid in a dilute state changes 
into a condensed state in a narrow slit [ 5 ] .  In onecomponent systems, extensive studies 
have been dedicated to investigation of adsorption, desorption and capillary phenomena in 
a confined space with variables such as temperature, pressure, wall separation and chemical 
potential [9]. In ow approach, all the thermodynamical quantities mentioned above are 
fixed (in equilibrium); only the wall-fluid force is allowed to vary. We wish to show how 
the wetting film develops and what the order of capillary condensation is in a simple and 
idealized model. The Sullivan [2] model is adopted for our binary fluid mixture confined 
between two parallel walls. It provides a possible way for us to deal with the problem 
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analytically, since all the interaction potentials (fluid-fluid and fluid-substrate) have an 
exponential form with the same range. After some algebra, we can transform the typical 
thermodynamical issue of the wetting transition into a dynamical version that describes the 
motion of a classical particle in a conservative potential, where the time corresponds to the 
thickness of wetting film, and a change in the trajectory refers to a transition of the wetting 
state. This approach has been successfully used in a series of previous studies [3,6,8, IO] 
on which the present paper is based. 

For the wetting problem studied here, the corresponding dynamical potential may have 
two peaks y and A. but not necessarily of the same height [ I l l  (coexistence of two phases), 
or three peaks y ,  6 and B (coexistence of three phases). The total time that the particle 
spends in its travel must be H ,  corresponding to the value of the distance between the 
two parallel walls. The particle cannot arrive at the right-hand summit of the peak as in 
the case H = 00 [8]; instead it may stop at some lower point P near the peak which is 
defined by the total energy of the particle. The turning point should be determined by the 
time I = H / 2  where its velocity is zero, because the initial and final conditions require 
that the route is symmetric back and forth; this means that only one phase intrudes into the 
slit in this case. When the fluid-wall potentials vary, exchange of two phases in the slit 
corresponds to capillary condensation and it may be first order or second order. However. 
another kind of trajectory is also possible when the particle starts to move near one peak 
and ends near the other peak, still keeping the duration H; this means that the two walls are 
wetted by two different phases separately and the profile of the fluid is asymmetric about 
the two walls. Unfortunately, in this case, the trajectory expansion method developed in 
[8] fails because the reference trajectory (a route connecting the two peaks concerned) is 
not known as a prerequisite; so we cannot obtain an analytical result for this case; instead 
we have to study the problem with the help of numerical calculation. The result shows that 
this kind of trajectory corresponds to a state with a higher free energy than the PQ route; 
so it can be neglected in the study. 

Our analytical approach is carried out by expanding the dynamical potential around the 
peak, which is correct only within a small range. This approximation restricts the validity 
of our analytical result and the derived separarix in the phase diagram is effective only 
for a small segment of ellipse (see figures 3 and 4 later), which means that the two walls 
cannot be adsorbed too much in our model. 

The present paper is organized as follows. Section 2 gives a dynamical description 
for the surface free energy of binary fluid mixtures confined between two parallel wails. 
Section 3 studies the capillary behaviours of the systems with the coexistence of two phases 
and with the coexistence of three phases. The last section gives some discussion on related 
problems. 

2. Surface free energy for an n-component mixture 

Suppose that an n-component fluid mixture with a chemical potential p: and a density pi 
(i = 1,2, . . . , n) is confined in a space with two parallel adsorbing walls located at x = 0 
and x = H and is homogeneous in the y, z directions. The system is in contact with 
a reservoir of fluid at temperature T and chemical potential pi. So the total number of 
particles in our system is not conserved (open system). The modern van der Waals theory 
[I21 gives the lowest-order surface free energy in this system: 
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where a summation over 1 to n is implied for the repeated indices, H is the separation 
between the two parallel walls, n is the distance from the left-hand wall, f~ is the 
Helmholtz free energy density for the hard-core system, @ i ( x )  is the left-hand wall 
potential, & ( x )  is the right-hand wall potential, p is the equilibrium pressure and x i j  

is the attractive intermolecular potential integrated over lateral dimensions. The equilibrium 
state is determined by Su/Gpi = 0 

where p ~ i  = afH/a&. Dividing equation (1) by kBT, using equation (2)  and inserting 
f~ = P H , P ~  - P H ,  we have 

a / k s T  = I -k J (3) 

where 

The Sullivan model in binary fluid mixtures behaves as 

0; = --E; exp(-x) 

xij(x - x ' )  = -$ztiexp(-Ix -n'l). 
bi = - ~ i  exp[-(H - x ) ]  

Introducing the quantities 

and matrices 

E ( E i I n x ~  K = ( K i ) n x ~  A = ( A i j L x n  R(x) = ( p i ( x ) ) n x t  

1" dx' exp(-x')R(x') Q = -- dx' exp[-(H - x')]R(xL). p = -1 

Here the subscripts n x 1 and n x n represent matrices of n rows and one column and 
of n rows and n columns, respectively. The real symmetry matrix A has a total number 
n of real eigenvalues Ai and there exists a real orthogonal matrix C which diagonalizes 
A like CAC' = A' with Ao = ( A ~ G L ~ ) , , ~ ~ .  So the matrix T = r C  causes T A P  = lo, 
where the matrix r = (A;"ZGjj)nxn and 1' is the unit matrix. It can easily be shown that 

A" 

K(0) = AP, K(H) = AQ; SO 

J = Et(P t (1) = ie+[TK(O) t TK(H)] 
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where e = 2TE = 
equation (2 )  we have 

is the wall potential matrix and e+ is its transposed matrix. From 

m(x) - ie[exp(-x) + exp[-(H - x ) ] }  + TK(x) = 0 

mi = Z,(t, - Mj). 

tiii + au/ami = o 

imimi + U = C 

(4) 

(5) 

(6) 
we can easily derive that the conservation of energy is expressed by the first integral 

(7) 
where U = rn - r - ;mimi is the dynamical potential and C is the total energy of the 

where m(x) = (mi)nul is the coordinates matrix of the corresponding classical particle and 

From the equivalence of equation (2) and the dynamical equation of the particle given by 

I '  ' 

particle 1131; SO au/am, = arH/ami -mi. 
Replacing TK(O), TK(H) in J by equation (4) yields 

J = ie+[e(l+ exp(-H)) - m(0) - m(H) ] .  
The transformed I takes the form 

where we have used the relation pi = i3rH/agi. Equation (5) gives am./ati = Tsi; so 
pi = (arH/am&. Thus I = -so IC - $himi + $ m i i i ] d x .  After some algebraic 
calculations, we obtain the matrix form as 

H 

I = JdH(m+m - C)dx - $ n + ( H ) m ( H )  - m+(O)m(O)] 

where H corresponds to the total time that the particle spends. Differentiating equation (2) 
with respect to x ( =  f) and taking f = 0 and t = H ,  one obtains the initial and final 
conditions of the particle's motion: 

Equation (3) becomes 

where SO = o o / k ~ T  - f(e+e) represents the area of an n-dimensional hypersurface in 
(n  + 1)-dimensional space (6. mt ,  mz.. . . , m.) and 

m(0) = m(0) - e  m(H) = -m(H) +e. ( 8 )  

o/kBT = f(e+e) exp(-H) +so - H C  

H s=1 m+(x)m(x)dr + f[m+(o)m(o) + rir+(H)l i l (H)l .  (9) 
Itcaneasily beprovedthat (a/aC)(uo/kBT) = H;sothesurfacefreeenergy(l) isseparated 
into two independent contributions: 

(10) 
where S, is the free energy when H = 00 in SO; it doubles the single-wall expression 
(2.17) in [lo] because the two walls are identical and each contributes an equal amount to 
the free energy. The latter term 

U / k s T  = Sw + AS 

AS = lw c dH + f(e+e) exp(-H) (11) 

is the modification to the free energy when H is finite, which corresponds to a correlation 
effect of the two walls. For an infinite separation H = CO. AS vanishes. 
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3. Capillary condensation 

In the dynamical description [lo], a classical particle moving in the potential U can be 
written in ideal lattice gas model as 

U = In[] + exp(h) + exp(h)] - r - i(m: + mi) 

= J G m l  - J G m z  + MI 

(12) 

where 

.5 = J E m l +  \ / o m 2  + M' 
are two components of chemical potentials; here A' and B' are intermolecular potentials 
between the same kind and between different kinds, respectively, and M' is the chemical 
potential in equilibrium (chosen equal for the two components in our treatment for 
simplicity). The initial and final conditions (8) and the first integral (7) of equation (6) 
define the initial and final curves in the plane (ml ,  m?); they coincide with each other 
completely. We call them the boundary line L as shown in figure 1. The permitted motion 
of the particle starts at a point Q on the curve L, moves towards a peak of potential (12), 
stops at a certain position P and returns back along the same route so as to keep the total time 
H .  Because of the symmetry of equation (6) with respect to the transformation t --f H - I ,  
only half the route up to the time H / 2  needs to be considered. 

"8 

Figure 1. Example of lhe state in which the phases y and A Coexist, where L is the boundary 
line, PQ and W are ;WO kinds of possible trajectory of lhe particle and where the parameters are 
A = 10, k = 0.95, mi(0) =0.839 (IefI-hand PQ route), mi(0) = 2.233 (right-hand F Q  route), 
m1(0)=2.179(Wmute)andC=-O.I. 
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3.1. State of two-coexisting-phases 

The two-coexisting-phases state is described by two peaks A and y of the potential (12) 
with almost the same height [81; they are located on axis ml  as in figure I .  Phase y has 
a higher density than phase A but they have the same contents of the two constituents. If 
curve L passes near peaks h and y ,  analytical study is possible. Expand (12) near peak y 
as 

(13) 

where U’ = -a2U/am:I,, b2 = -a2U/am&; here U and b are the principal curvatures at 
peak y with coordinates (yo, 0). Then equatlon (6) can be solved as 

ml = YO + CI exp(at) + Czexp(-ut) (14) 

where.the coefficients CI, Cz, C3 and G are related by the conditions ml(H/2)  = 
mz(K/2) = 0, which yields CZ = CI exp(uH), C4 = C3 exp(bH). Here we have taken the 
total energy of the particle C as negative; so the particle cannot reach the peak of potential 
(12); it may stop at the lower position P with U = C. From equations (7) and (13) we 
get the trace of point P as an ellipse centred at the peak y .  which is called the stopp&g 
line. This result is also true for peak A. The initial condition (8) defines the coefficients in 
equation (14) as 

CI = ( e l  -yo)/[(l - a )+ ( l+a )exp(uH) l  

U = - iu2(m 1 2 2  
I - YO)’ - I b  m2 

m2 = C3 exp(bt) + C4exp(-bt) 

- 
C3=ez/[(l -b)+(l+b)exp(bH)] .  

Energy conservation of the particle, at t = 0, takes the form 

C = t [ m : ( O )  +h:(O)l - fu2[ml(0) -yo]* - fb2m:(0) 

which defines a relation between the total energy C of the particle and the wall separation 
H ;  so AS is obtained from equations (11) and (14): 

AS = $(e: + e:) exp(-H) + -%(el - y0)’/(1 +u)[(l - a )  + ( I  + u ) e x p ( u ~ ) ]  

+ (-2be$)/(l +b)[(l - 6) + (I  + b)exp(bH)]. 

If H = CO, the particle may move towards peak y and stop at the top; so the solution 
(14) becomes 

ml = yo + C; exp(-at) m2 = C;exp(-bt). (15) 

The initial condition (8) defines C; = (el - v~) / ( l  + a ) ,  C$ = eZ/(l + b): the free energy 
S, is 

S , = - f ( e : + e : ) + a ( e l  -yo)2/2(1+a)+bei/2(1 +b). 

The total free energy (IO) near peak y is 

U y / k B T  -$(e: + - exp(-H)] + q ( e ~  - M)’+ aze: (16) 



-1 

“ t  

..< \. - 
\. 

Figure 3. Sketch of the separatrix of the wening 
state in the state in which two phases COexisL 

where 

(YI =[n/2(1+a)][l -4 / (1 -~ )+(1+a)exp(aH) ]  

cuz = [b/2(1+ b ) l [ l -  4/(1- b) + (1 + b) exp(bH)]. 

The same procedure can give the free energy uA/ksT near peak A; it takes quite the 
same form as equation (16) with the substitutions (011,a~) -+ (p1,p2),  yo 3 A0 and 
(a ,  b )  + (a’, b’, the principal curvatures at the peak A). Because a, b, a’ and b’ are all 
smaller than 1; so @ I ,   CY^, 

If we keep e? unchanged, both u y / k B  T and uk/ksT  versus el are parabolae in the plane 
of ( u / k ~ T ,  el). They intersect at the point el = e; which is determined by 

and pz are smaller than f .  

al(e; - yo)’ + a2e: = PI (e; - AO)‘ -I- he; .  (17) 
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I*\ n 1 I ~., 
0 0 . 5  I 1,s 2 1 . 5  3 3.5 4 

distance f rom the wall i - 8  2 - 0  

Flyre 4. (a) Profile of the density for Ruid molecules corresponding to the left-hand PQ mute 
in figure I ,  where the parameters are A = IO. k = 0.95 and C = -0.1: 0. pmhle of the total 
system; t. profile of component 1; 0, profile of component 2. (b) Profile of the density for 
Ruid molecules corresponding to the "@&hand PQ mute in figure I, where the parameters are 
A = 10. k = 0.95 and C = -0.1: .---.prohle of the total system; +, profile of component I: 
0, profile of component 2. ( c )  (opposite) Profile of the density of fluid molecules corresponding 
to the mule W in figure 1, where h e  parameters are A = IO, k = 0.95 and C = -0.1: -.--, 
profile of the total system: t. pmfile of component 1: 0. pmfile of component 2. 

The slopes at el = e; are 

Thus if 
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0 2 3 4 5 
i - 0  distance from the wall i - x  

Figure 4. (Continued) 

there will be first-order capillary condensation; if 

(YI (e; - yo) = BI (e; - l o )  (19) 

there may be continuous capillary condensation. The corresponding intersecting case of the 
two parabolae in the ( o / k ~ T ,  el) plane is shown in figure 2. 

The phase separahix of the wetting state is defined by (17) with the superscript asterisk 
in e; removed; after some manipulations we have 

(al - ~ l ) ( e l  +e!)’ + (or2 - 82)e; - alp1 ( ~ 0  - yOP/(orl - P I )  = o (20) 

where e: = (,SIAo - u l y 0 ) / ( a ~  - PI) .  This is an ellipse with the centre (-e:, 0) on the 
el axis. Owing to the approximate expansions of the potential near peaks y and A, the 
results above are valid only when el,  e2 vary within a small range so that the boundary line 
always passes near the stop line. The separatrix (20) is thus reduced to a small segment 
of ellipse as shown in figure 3. (e;)o is determined by equation (20) with e2 = 0, i.e. 
(epo = yo + a ( h o  - yo)/(& + &). The region to the right of the separatrix 
corresponds to a profile of density such as figure 4(a); that to the left refers to a profile 
such as figure 4(b).  For comparison we also give the profiles of trajectory W in figure 4(c); 
they are asymmetrically distributed about the two walls. When el moves fkom left to right 
across the separatrix in figure 3, a transition from a gas-like fluid to a liquid-lie fluid may 
occur in this two parallel-plate system; this can be of continuous or discontinuous nature 
depending on the intermolecular potential (represented by the coefficients 011, (YZ, PI and 
B z )  or on the separation H between the two walls. 

3.2. State of three-coexisting phases 

When the potential (12) has three peaks y .  6 and ,3 with (nearly) the same height, we say 
that the fluid is in a threecoexisting-phases state. Peak y is located on axis m l ,  whereas 
peaks 6 and p are off axis ml but are distributed symmetrically about axis ml.  Of the 
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three coexisting phases, y has the lowest density and the other two constituents have equal 
contents; 6 and ,9 have a higher density but one constituent in phase 6 equals the other 
constituent in phase ,3 and vice versa. Figure 5 shows the position of the three peaks. If 
the boundary curye L passes near peaks y and A, we can adopt the same procedure as in 
section 3.1 to study the wetting behaviours, because the transformation 

can change the coordinate plane ( m l , m 2 )  into the principal axes coordinates (g , ,gZ)  of 
peak 6, where 61.6, are the coordinates of peak 6 and q = (or2 - az)/(orz - p 2 )  is a constant 
[8]; here 

01’ = ;[a2 + b2 + ,/(a2 - b2)2 + 4PI 

and 

p2 = $a2 + b2 - ,/(a2 - b2)2 + 4c4] 

U’ = (a2U/am:)ld b2 = (a2U/am:)ld C’ = (a2U/amlam2)ld. 

Thus the results in section 3.1 can be used to discuss the wetting behaviours between phases 
y and 6 if we regard (g1.82) as (ml,mz). The separatrix of the wetting state is shown 
in figure 6. In this case, the wetting features seem to have no determinate relation to the 
symmetry of the potential, not like the situation in a single wall [8] where the position of 
the reference trajectory determines the two-coexisting-phases and threecoexisting-phases 
states behave quite differently. 

I q6i.C) 

/ Figure 5. Sketch of the state in which thee phases 
coexist, where L is the baundary line and F Q  is 
a passible trajectory of the particle. Owing to the 
symmetry of the dynamical potential U &ut the 
m I axis, only the upper half of the plane is given. 

“p 
.-’ 1 

>* 
2. 

p :-.- 
b o 1  111 

I . - Figure 6. Sketch of the separavix of the wetting 
state in the slate in which three phases coexist. L*,Ol *I 

The other two phases y and ,9 have quite the same behaviours as y and 6 because of 
the symmetry of the dynamical potential (12); moreover, the phases 6 and ,9 can also be 
discussed in the same way; we shall omit these repetitions here. 
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4. Discussiou 

Capillary condensation is not the sole phenomenon but a continuous transition is also 
possible in binary Sullivan fluid mixtures confined in two ideal adsorbing parallel substrates 
when the fluid-wall potential is varied. The total energy C versus wall separation H in 
our two-coexisting-phases system can be proved to be monotonic; thus no ‘folding relation’ 
like that in a onecomponent system [5 ]  occurs and consequently no critical point exists. In 
our discussion, the temperature plays an equivalent role to the fluid-subshate potential; so 
a similar conclusion as above can also be derived when the temperature is varied, this has 
been much discussed in the literature. When H increases, one phase increases in thickness 
and we return to the case of two singlewall systems [81 and the free energy is doubled. 

The present study is based on the assumption that the chemical potential Mi and M; of 
the two components are equal, which gives a symmetric potential U ( m l ,  mz) = U(m1, -mz) 
[lo]. For the general case where Mi # Mi. the symmetry of U is violated and the analytical 
study becomes difficult, although we can still adopt the same measures as here. Detailed 
study goes beyond the scope of our present study. 

When the wall-fluid interaction (only for one component) increases (el moves from 
left to right in the (cr/ksT, el) plane), the left-hand PQ route corresponds to the lower free 
energy and phase y intrudes into the slit. When el crosses e;, the right-hand PQ route has 
a favourable free energy, and phase y appears in the slit. At e; the transition may be first 
order or second order, depending on the intermolecular interaction or the distance between 
the two walls, since the coefficients al. in equations (18) and (19) contain two kinds of 
parameter, i.e. ( A ,  k) and H; they can lead to capillary condensation. When a continuous 
transition occurs, the two PQ trajectories do not coincide but their freeenergy curves in 
figure 2(b) are tangents at e;. Like the usual wetting transition where the transition point 
TW will shift to T, if the substrate potential changes [l], the capillary condensation point 
e; in our system will also move for different wall potentials el (see figure 3) or for different 
separations of the slit (included through coefficients al. aa, and 82; see equation (17)). 

When H + CO, one of the two phases y and A, e.g. phase y ,  fills the bulk; capillary 
condensation then changes into the usual wetting transition (the film thickness of phase A 
on the wall becomes infinite), which can be first order or second order depending on the 
curvatures of the principal axes [8]. 
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